Search results for " Boundary value problems"

showing 10 items of 12 documents

A geometrical criterion for nonexistence of constant-sign solutions for some third-order two-point boundary value problems

2020

We give a simple geometrical criterion for the nonexistence of constant-sign solutions for a certain type of third-order two-point boundary value problem in terms of the behavior of nonlinearity in the equation. We also provide examples to illustrate the applicability of our results.

Applied MathematicsMathematical analysislcsh:QA299.6-433lcsh:AnalysisType (model theory)nonexistence of solutionsthird-order two-point boundary value problemsNonlinear systemThird orderSimple (abstract algebra)comparison methods for the first zero functionsBoundary value problemConstant (mathematics)Value (mathematics)AnalysisMathematicsSign (mathematics)Nonlinear Analysis
researchProduct

Multiple solutions for a Sturm-Liouville problem with mixed boundary conditions

2010

Critical points mixed boundary value problems multiple solutions
researchProduct

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

Guaranteed error bounds for a class of Picard-Lindelöf iteration methods

2013

We present a new version of the Picard-Lindelof method for ordinary dif- ¨ ferential equations (ODEs) supplied with guaranteed and explicitly computable upper bounds of an approximation error. The upper bounds are based on the Ostrowski estimates and the Banach fixed point theorem for contractive operators. The estimates derived in the paper take into account interpolation and integration errors and, therefore, provide objective information on the accuracy of computed approximations. peerReviewed

Discrete mathematicsClass (set theory)Banach fixed-point theoremOdeguaranteed error boundsPicard-Lindelöf methodsinversio-ongelmatelliptic boundary value problemsPower iterationApproximation errorOrdinary differential equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsa posteriori estimatesObjective informationInterpolationMathematics
researchProduct

An augmented MFS approach for brain activity reconstruction

2017

Abstract Weak electrical currents in the brain flow as a consequence of acquisition, processing and transmission of information by neurons, giving rise to electric and magnetic fields, which can be modeled by the quasi-stationary approximation of Maxwell’s equations. Electroencephalography (EEG) and magnetoencephalography (MEG) techniques allow for reconstructing the cerebral electrical currents and thus investigating the neuronal activity in the human brain in a non-invasive way. This is a typical electromagnetic inverse problem which can be addressed in two stages. In the first one a physical and geometrical representation of the head is used to find the relation between a given source mo…

Electromagnetic fieldNumerical AnalysisGeneral Computer Sciencemedicine.diagnostic_testApplied MathematicsScalar (physics)010103 numerical & computational mathematicsMagnetoencephalographyInverse problem01 natural sciencesFinite element methodTheoretical Computer Science010101 applied mathematicsSettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaMethod of Fundamental Solutions Boundary value problems M/EEG LOOCV algorithmModeling and SimulationmedicineMethod of fundamental solutionsBoundary value problem0101 mathematicsBoundary element methodAlgorithmMathematics
researchProduct

Infinitely many solutions for a mixed boundary value problem

2010

The existence of infinitely many solutions for a mixed boundary value problem is established. The approach is based on variational methods.

General MathematicsMathematical analysisFree boundary problemBoundary value problemMixed boundary conditionCritical points mixed boundary value problems infinitely many solutionsMathematics
researchProduct

Nonlocal Third Order Boundary Value Problems with Solutions that Change Sign

2014

We investigate the existence and the number of solutions for a third order boundary value problem with nonlocal boundary conditions in connection with the oscillatory behavior of solutions. The combination of the shooting method and scaling method is used in the proofs of our main results. Examples are included to illustrate the results.

Mathematical analysisestimation of the number of solutionsMixed boundary conditionSingular boundary methodBoundary knot methodRobin boundary conditionnonlocal boundary conditionsBoundary conditions in CFDShooting methodModeling and SimulationQA1-939nonlinear boundary value problemsBoundary value problemMathematicsAnalysisSign (mathematics)MathematicsMathematical Modelling and Analysis
researchProduct

Stability of the Calderón problem in admissible geometries

2014

In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderon problem. peerReviewed

Pure mathematicsCalderón problemControl and Optimizationta111Stability (learning theory)InversestabilityInverse problemType (model theory)Dimension (vector space)Log-log plotModeling and SimulationInverse boundary value problemsDiscrete Mathematics and CombinatoricsPharmacology (medical)UniquenessBoundary value problemAnalysisMathematicsInverse Problems & Imaging
researchProduct

Morse-Smale index theorems for elliptic boundary deformation problems.

2012

AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…

Pure mathematicsGeodesicApplied MathematicsMathematical analysisMixed boundary conditionSpectral flow Maslov index Index Theory Elliptic boundary value problemsElliptic boundary value problemsElliptic boundary value problemElliptic boundary deformation problemMaslov indexNeumann boundary conditionFree boundary problemSpectral flowElliptic boundary deformation problemsIndex TheoryBoundary value problemAtiyah–Singer index theoremAnalysisEnergy functionalMathematics
researchProduct

Green’s function and existence of solutions for a third-order three-point boundary value problem

2019

The solutions of third-order three-point boundary value problem x‘‘‘ + f(t, x) = 0, t ∈ [a, b], x(a) = x‘(a) = 0, x(b) = kx(η), where η ∈ (a, b), k ∈ R, f ∈ C([a, b] × R, R) and f(t, 0) ≠ 0, are the subject of this investigation. In order to establish existence and uniqueness results for the solutions, attention is focused on applications of the corresponding Green’s function. As an application, also one example is given to illustrate the result. Keywords: Green’s function, nonlinear boundary value problems, three-point boundary conditions, existence and uniqueness of solutions.

Pure mathematicsthree-point boundary conditionsValue (computer science)010103 numerical & computational mathematicsFunction (mathematics)Green’s function01 natural sciences010101 applied mathematicsThird ordersymbols.namesakeexistence and uniqueness of solutionsModeling and SimulationGreen's functionsymbolsQA1-939nonlinear boundary value problemsOrder (group theory)Nonlinear boundary value problemBoundary value problemUniqueness0101 mathematicsAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct